

 Navigation

 	
 index

 	
 next |

 	flo 0.2.0 documentation

flo

flo is a data workflow utility that is specifically designed to
enable rapid iteration and development of complex data pipelines. Its
command line interface and task
configuration have many features that make
flo ideal for developing data workflows, among them:

	flo hashes the state of each file that it monitors to make it
amenible to working with how most distributed version control
systems work.

	flo times each step of the analysis, making it easy to
determine how long any particular run will take before
flo does anything.

	flo comes with command line autocompletion builtin, making it easy to evaluate your options
quickly in the terminal.

	flo‘s task configuration is written in YAML, making it easy to read and write without
having to know an archaic language (sorry
make, its not you, its me).

	flo is written in python, which is a native language to most
data-savvy users to make it as easy as possible to maintain by the
community.

If you’re sold, get started. If not, read on:

	op-ed

	quick start

	flo.yaml specification

	command line interface

	developing

	changelog

 Copyright 2014, Dean Malmgren.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	flo 0.2.0 documentation

op-ed

We built flo because existing tools were not
cutting it for us and we kept finding ourselves saying things like:

“It should be easy to swap in development data for production data.”
- @bo_p [http://twitter.com/bo_p]

“It should be easy to work on one file at a time.” - @mstringer [http://twitter.com/mstringer]

“It should be easy to avoid making costly mistakes.” -
@deanmalmgren [http://twitter.com/deanmalmgren]

There are many ways one could conceivably write a data analysis workflow
from scratch, from writing single programs that ingest, analyze and
visualize data to simple scripts that each handle one part of the
puzzle. Particularly when developing workflows from scratch, we have the
strong opinion that writing small scripts with intermediate outputs is a
much more effective way to develop a prototype data workflow. In our
experience, we find it to be very convenient to edit a script, run it,
and repeat several times to make sure it is behaving the way we intend.
For one thing, this pattern makes it far easier to spot check results
using a litany of available command line tools. For another, this
pattern makes it easy to identify weak links (e.g. incorrect results,
poor performance, etc.) in the analysis and improve them piece by piece
after the entire workflow has been written the first time.

design goals

This package is deliberately designed to help users write small, but
compact workflow prototypes using whatever tools they prefer — R,
pandas, scipy, hadoop. The goal here is not to provide a substitute
for these tools, but rather to be the glue that sticks them
together. It takes inspiration from a number of existing tools that have similar aims, particularly GNU make that
has many desirable properties of working with data workflows [http://bost.ocks.org/mike/make/]. Specifically, the design goals
for this project are to:

	Provide an easy-to-use framework. This applies for n00bs and pros
alike. Use human-readable syntax.

	Prevent, as much as reasonably possible, costly mistakes. Avoid
inadvertently rerunning commands that overwrite results or executing
commands that take a long time.

	Encourage good development practices, but allow for flexibility.
There’s a tradeoff here, but we have an opinion on how
to do this in a good way.

prior art

GNU make

GNU make [http://www.gnu.org/software/make/] is a very useful tool
that was designed mostly for building complicated software packages. It
works particularly well when you are compiling a bunch of .c or
.h files into .o files because you can use rules to define how
.o files are created from a bunch of dependencies (and usually not
too many of them). I’ve used this to manage data
workflows [http://bost.ocks.org/mike/make/] too and, provided you’re
only working by yourself and you are comfortable with its arcane file
format, make is a great tool. A few things make make less
desireable, particularly for managing data workflows that tend to take
hours or days rather than minutes.

	make uses timestamps, instead of hashes, to determine when a file
is out of date with the rest. This isn’t so terrible, except when
you’re working in an asynchronous development environment with hg
or git that does not version the timestamp of files.

	Makefiles are extraordinarily picky and not terribly easy for
n00bs to use. Even for those that are fluent in Makefile, looking
over a Makefile is pretty cumbersome and not easy to read. This is a
downer when you’re trying to rapidly develop.

	make does not run in parallel or, if it does, it requires a
deeper understanding of its arcane format than I am comfortable with.
Particularly with data workflows that can potentially take days to
complete, this is a very undesireable behavior.

	make is filesystem based, but doesn’t have the ability to test
whether databases or cloud storage has been updated. This is pretty
important for data workflows.

invoke

Invoke [http://docs.pyinvoke.org/en/latest/] is intended to be a
make replacement for python with a nice Fabric-like command line
interface. It is function/class based rather than file based and,
because its in python, you can basically do anything you need to within
an invoke script. Downsides include:

	Because its function/class based, there is a lot of syntactic bloat
that does not make invoke scripts considerably longer than they need
to be.

	Although invoke does provide a ‘pre’ keyword argument [http://docs.pyinvoke.org/en/latest/concepts/execution.html#pre-tasks],
it is not possible to run an invoke script without rerunning the
entire workflow (git issue here [https://github.com/pyinvoke/invoke/issues/100]). Although its
certainly possible to extend invoke to address this use case, its
not clear that it’ll be enough to address all the use cases that we
have in mind.

Fabric

Fabric [http://docs.fabfile.org/en/latest/] is a tool that is
intended for application deployment to many different servers
simultaneously. It has a great command-line interface for deployment and
DevOps, but doesn’t provide a lot of out-of-the box functionality for
managing data workflows. Downsides include:

	Fabric parallelizes tasks across machines, not tasks. In data
analysis situations, you can actually divvy up analysis tasks
depending on what data files are or not available.

	fabfiles tend to get big rather quickly, even for relatively
mundane jobs. The fact that its in python is nice, but probably not
necessary for running a data analysis workflow.

	There is no default way of detecting whether a task needs to be run
based on timestamps or hashes. Its certainly possible to extend
Fabric to address this issue.

Drake

Drake [https://github.com/Factual/drake] is intended to be the “make
for data”. Drakefiles have a very similar look and
feel [https://github.com/Factual/drake/wiki/Tutorial] of
Makefiles. It has some pretty decent advantages over make in
that it comes pre-equipped with
parallelization [https://github.com/Factual/drake/wiki/Async-Execution-of-Steps]
and with filesystem, S3 and HDFS integration, but there are a few key
disadvantages:

	It is based on
timestamps [https://docs.google.com/document/d/1bF-OKNLIG10v_lMes_m4yyaJtAaJKtdK0Jizvi_MNsg/edit#heading=h.30j0zll].
This makes it tricky to develop when working in an asynchronous
development environment like hg or git.

	Its written in clojure, which makes it difficult for most data people
to contribute too (?), or at least difficult for this data person to
read.

AWS Data Pipeline

Amazon’s Data Pipeline [http://aws.amazon.com/datapipeline/details/]
is intended to organize data pipelines that occur entirely in Amazon’s
cloud. This seems extremely handy if you’re playing entirely within
Amazon’s walls, but not terribly convenient for a wide range or projects
where a cloud solution is unnecessarily overkill.

LONI Pipeline

Meh. http://pipeline.bmap.ucla.edu/

Predictive Modeling Markup Language (PMML)

PMML is a language to define workflows in data analysis. There appear to
be many tools that will execute PMML workflows, for example
Augustus [https://code.google.com/p/augustus/] and
Zementis [http://aws.amazon.com/customerapps/1583?_encoding=UTF8&jiveRedirect=1]
for executing on Amazon Web Services. It appears to be geared more
toward developing robust, “enterprise” workflows as opposed to rapid
development.

Tez

Tez [http://tez.apache.org/] appears to be the Hadoop equivalent of
creating data workflows using YARN [http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html].
If you’re nuts about java and everything you do is in hadoop, this is
probably great for you.

KNIME

KNIME [http://www.knime.org/] is a graphical interface for
defining data and analysis steps in a data workflow. I’m sure its
possible to write custom analysis steps in KNIME to make it more
practical in real world situations, but the tight coupling between the
pipeline definition and actually running an analysis and doing some
visualization is highly unappealing for the use cases I have in
mind. Nonetheless, its worth mentioning. The GUI is admittedly kinda
nice and certainly easier to understand for n00bs.

 Copyright 2014, Dean Malmgren.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	flo 0.2.0 documentation

quick start

	Install this package.

pip install flo

	Write a flo.yaml. Create a flo.yaml file in the root of your
project. flo.yaml can have many features, but the basic idea is to make it easy to
quickly define a sequence of dependent tasks in an easy-to-read
way. There are several examples [http://github.com/deanmalmgren/flo/blob/master/examples/], the
simplest of which is the hello-world example [http://github.com/deanmalmgren/flo/blob/master/examples/hello-world/flo.yaml]. Briefly,
every task is a YAML object that has a creates key that
represents the resource that is created by this task and a
command key that defines the command that are required to
create the resource defined in creates. You can optionally
define a depends key that lists resources, either filenames on
disk or other task creates targets, to quickly set up
dependency chains.

	Execute your workflow. From the same directory as the
flo.yaml file (or any subdirectory), execute flo run and
this will run each task defined in your flo.yaml until
everything is complete. If any task definition in the flo.yaml
or the contents of its dependencies change, re-running flo run
will only redo the parts of the workflow that are out of sync since
the last time you ran it. The flo command has several
other convenience options to facilitate
quickly writing data workflows. Running the hello-world example [http://github.com/deanmalmgren/flo/blob/master/examples/hello-world]
for the first time yields something like this:

[image: hello world screenshot]

	Repeat steps 2-3 until your data workflow is complete. When
developing a data workflow, it is common to write an entire workflow
and then go back and revisit particular parts of the analysis. The
entire purpose of this package is to make it easy to refine task
definitions and quickly re-run workflows with confidence that the
user will not ruin previous results or start a simulation that takes
a long time.

 Copyright 2014, Dean Malmgren.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	flo 0.2.0 documentation

flo.yaml specification

Individual analysis tasks are defined as YAML objects [http://en.wikipedia.org/wiki/YAML#Associative_arrays] in a file
named flo.yaml (or whatever you prefer) with
something like this:

creates: "path/to/some/output/file.txt"
depends: "path/to/some/script.py"
command: "python {{depends}} > {{creates}}"

Every YAML object that defines a task must have creates
and command keys and can optionally contain a
depends key. The order of these keys does not matter; the
above order is chosen for explanatory purposes only.

creates

The creates key uniquely identifies the resource that is
created. By default, it is interpreted as a path to a file (relative
paths are interpreted as relative to the flo.yaml file) or a
directory. Importantly, every task is intended to create a single file
or directory. If you have a task that creates multiple files, you can
either (i) split that into separate tasks or (ii) have all of those
files embedded in a directory and use the directory name as the
creates value like this:

creates: "path/to/output/directory"
depends: "path/to/some/script.py"
command:
 - "mkdir -p {{creates}}"
 - "python {{depends}} {{creates}}"

In this case, the directory path/to/output/directory is passed as
the first argument to path/to/some/script.py, which can then add
as many files as necessary to that directory. When this task is
complete, flo checks the hash of all files in
path/to/output/directory and all of its child directories to
determine if it is in sync or not.

depends

The depends key defines the resource(s) on which this task depends.
It is common for depends to specify many things, including data
analysis scripts or other tasks from within the flo.yaml. Multiple
dependencies can be defined in a YAML
list [http://en.wikipedia.org/wiki/YAML#Lists] like this:

depends:
 - "path/to/some/script.py"
 - "another/task/creates/target.txt"

These dependencies are what flo uses to determine if a task is out
of sync and needs to be re-executed. Importantly, flo obeys the
dependencies when it constructs the task graph but always runs in a
deterministic order. If a specified
depends does not exist immediately prior to flo running the
task, flo throws an informative error.

command

The command key is mandatory and it defines the command(s) that
should be executed to produce the resource specified by the
creates key. Like the depends key, multiple steps can be
defined in a YAML list [http://en.wikipedia.org/wiki/YAML#Lists]
like this:

command:
 - "mkdir -p $(dirname {{creates}})"
 - "python {{depends}} > {{creates}}"

templating variables

Importantly, the command is rendered as a jinja
template [http://jinja.pocoo.org/] to avoid duplication of
information that is already defined in that task. Its quite common to
use {{depends}} and {{creates}} in the command
specification, but you can also use other variables like this:

creates: "path/to/some/output/file.txt"
sigma: "2.137"
depends: "path/to/some/script.py"
command: "python {{depends}} {{sigma} > {{creates}}"

In the aforementioned example, sigma is only available when
rendering the jinja template for that task. If you’d like to use
sigma in several other tasks, you can alternatively put it in a
global namespace in a flo.yaml like this (similar example here [http://github.com/deanmalmgren/flo/blob/master/examples/model-correlations]):

sigma: "2.137"
tasks:
 -
 creates: "path/to/some/output/file.txt"
 depends: "path/to/some/script.py"
 command: "python {{depends}} {{sigma} > {{creates}}"
 -
 creates: "path/to/another/output/file.txt"
 depends:
 - "path/to/another/script.py"
 - "path/to/some/output/file.txt"
 command: "python {{depends[0]}} {{sigma}} < {{depends[1]}} > {{creates}}"

Another common use case for global variables is when you have several
tasks that all depend on the same file. You can also use jinja
templating in the creates and depends attributes of your
flo.yaml like this:

input: "data/sp500.html"
tasks:
 -
 creates: "{{input}}"
 command:
 - "mkdir -p $(dirname {{creates}})"
 - "wget http://en.wikipedia.org/wiki/List_of_S%26P_500_companies -O {{creates}}"
 -
 creates: "data/names.dat"
 depends:
 - "src/extract_names.py"
 - "{{input}}"
 command: "python {{depends|join(' ')}} > {{creates}}"
 -
 creates: "data/symbols.dat"
 depends:
 - "src/extract_symbols.py"
 - "{{input}}"
 command: "python {{depends|join(' ')}} > {{creates}}"

There are several examples [http://github.com/deanmalmgren/flo/blob/master/examples/] for more
inspiration on how you could use the flo.yaml specification. If you
have suggestions for other ideas, please add them [http://github.com/deanmalmgren/flo/issues]!

deterministic execution order

flo is guaranteed to run in the exact same order every single
time and its important that users understand how it works. When
flo is executed, it makes sure to
obey the dependencies specified in the YAML configuration. In the
event of ties flo is executed in the same order as the tasks
appear in the YAML configuration. Technically, this is very similar to
a breadth first search [http://en.wikipedia.org/wiki/Breadth-first_search] originating
from the set of tasks that have no dependencies except that we order
things based on the maximum distance that each task is from any
given source node and we break ties based on the order in the YAML
configuration file.

The deterministic order example [http://github.com/deanmalmgren/flo/blob/master/examples/deterministic-order]
contains a few different YAML configuration files to demonstrate how
this works in practice, the highlights of which are summarized here.

[image: task graph for sibling tasks that all depend on the same parent]
For sibling tasks, sibling tasks are executed in the order in which
they appear in the YAML configuration file, but always after the their
dependencies have been satisfied. In this example [http://github.com/deanmalmgren/flo/blob/master/examples/deterministic-order/sibling.yaml],
the task graph looks like this and the tasks are guaranteed to run in
alphabetical order.

[image: task graph for parallel task threads]
For parallel threads, task threads are executed based on their
distance from the source tasks and secondarily based on their ordering
in the YAML configuration file. In this example [http://github.com/deanmalmgren/flo/blob/master/examples/deterministic-order/parallel.yaml],
the task graph looks something like this and the tasks are guaranteed
to run in alphabetical order.

[image: task graph for merging task threads]
For merging task graphs, tasks are executed based on their maximal
distance from any source task. In this example [http://github.com/deanmalmgren/flo/blob/master/examples/deterministic-order/merge.yaml],
the task graph looks something like this and the tasks are guaranteed to
run in alphabetical order.

 Copyright 2014, Dean Malmgren.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	flo 0.2.0 documentation

command line interface

This package ships with the flo command, which embodies the entire
command line interface for this package. This command can be run from
the directory that contains flo.yaml or any of its child
directories. Output has been formatted to be as useful as possible,
including the task names that are run, the commands that are run, and
how long each task takes. For convenience, this information is also
stored in .flo/flo.log.

To make the command line interface as usable as possible,
autocompletion of available options with workflow is enabled by
@kislyuk’s amazing argcomplete [https://github.com/kislyuk/argcomplete] package. Follow
instructions to enable global autocomplete [https://github.com/kislyuk/argcomplete#activating-global-completion]
and you should be all set. As an example, this is also configured in
the virtual machine provisioning for this project [http://github.com/deanmalmgren/flo/blob/master/provision/development.sh#L17]. Here,
we elaborate on a few key features of flo; see flo --help for
details about all available functionality.

running workflows

By default, the flo run command will execute the entire workflow, or
at least the portion of it that is “out of sync” since the last time it
ran. Executing flo run twice in a row without editing any files in
the interim will not rerun any steps. If you edit a particular file in
the workflow and re-execute flo run, this will only re-execute the
parts that have been affected by the change. This makes it very easy to
iterate quickly on data analysis problems without having to worry about
re-running an arsenal commands — you only have to remember one,
flo run.

flo run # runs everything for the first time
flo run # nothing changed; runs nothing
edit path/to/some/script.py
flo run # only runs the parts that are affected by change

Importantly, if you edit a particular task in the flo.yaml itself,
this will cause that particular task to be re-run as well:

flo run
edit flo.yaml # change a particular task's command
flo run # rerun's that command and any dependent task

The flo command is able to do this by tracking the status of all
creates, depends, and task definitions by hashing the contents
of these resources. If the contents in any depends or the task
itself has changed since the last time that task was run, flo will
run that task. For reference, the hashes of all of the creates,
depends, and workflow task definitions are in .flo/state.csv.

same project, different workflows

Naturally, there will be times when you’ll want to have separate sets
of steps to accomplish different things. One simple way to separate
your workflow configuration is by putting them in two separate files,
say figures.yaml and analysis.yaml. You can then specify
running these separate workflows on the command line with the
--config option like this:

flo run --config figures.yaml
flo run --config analysis.yaml

All other behaviors of the YAML configuration and use of the flo
command remain exactly the same.

limiting flo run execution

Oftentimes we do not want to run the entire workflow, but only a
particular component of it. Like GNU make, you can specify a particular
task by its creates value on the command line like this:

flo run path/to/some/output/file.txt

This limits flo to only executing the task defined in
path/to/some/output/file.txt and all of its recursive upstream
dependencies. Other times we do not want to run the entire workflow,
but run everything after a specific task. We can do that like this:

flo run --start-at path/to/some/file.txt

This limits flo to only executing the task defined in
path/to/some/file.txt and all of its recursive downstream
dependencies. This can be combined with flo run task_id to only all
tasks between two specified tasks like this:

flo run --start-at path/to/some/file.txt path/to/some/output/file.txt

If you ever want to only run one task, say a task that creates
path/to/some/file.txt, you can specify that task as both the
starting and ending point of the workflow run with --only:

these two things are the same
flo run --only path/to/some/file.txt
flo run --start-at path/to/some/file.txt path/to/some/file.txt

In some situations — especially with very long-running tasks that
you know haven’t been affected by changes — it is convenient to be
able to skip particular tasks like this:

flo run --skip path/to/some/file.txt

This eliminates the task associated with path/to/some/file.txt from
the workflow but preserves the dependency chain so that other tasks are
still executed in the proper order.

Sometimes it is convenient to rerun an entire workflow, regardless of
the current status of the files that were generated.

flo run
don't do anything for several months
echo "Rip Van Winkle awakens and wonders, where did I leave off again?"
echo "Screw it, lets just redo the entire analysis"
flo run --force

For long-running workflows, it is convenient to be alerted when the
entire workflow completes. The --notify command line option makes it
possible to have the last 100 lines of the .flo/flo.log sent to an
email address specified on the command line.

flo run --notify j.doe@example.com

I’m nervous, what’s going to happen?

While we don’t recommend it, its not uncommon to get
“in the zone” and make several edits to analysis scripts before
re-running your workflow. Because we’re human, its easy to incorrectly
remember the files you edited and how they may affect re-running the
workflow. To help, the flo status command lets you see which
commands will be run and approximately how much time it should take
(!!!).

flo run
edit path/to/some/script.py
edit path/to/another/script.py
echo "a long time passes"
flo status # don't run anything, just report what would be done

For reference, flo stores the duration of each task in
.flo/duration.csv. Another way you can comfort yourself is by
looking at the status visualization.

flo status --serve

which displays something like this:

[image: status visual]

Starting over

Sometimes you want to start with a clean slate. Perhaps the data you
originally started with is dated or you want to be confident a workflow
properly runs from start to finish before inviting collaborators.
Whatever the case, the flo clean command can be useful for removing
all creates targets that are defined in flo.yaml. With the
--force command line option, you can remove all files without having
to confirm that you want to remove them. If you just want to remove a
particular target, you can use flo clean task_id to only remove that
creates target.

flo clean # asks user if they want to remove `creates` results
flo clean --force # removes all `creates` targets without confirmation
flo clean a/task # only remove the a/task target

Saving results

Before removing or totally redoing an analysis, I’ve often found it
useful to backup my results and compare the differences later. The
flo archive command makes it easy to quickly backup an entire flo
(including generated creates targets, source code specified in
depends, and the underlying flo.yaml) and compare it to previous
versions.

flo archive # store archive in .flo/archives/*.tar.bz2
for i in `seq 20`; do
 edit path/to/some/script.py
 flo run
done
echo 'oh crap, this sequence of changes was a mistake'
flo archive --restore # uncompresses archive

 Copyright 2014, Dean Malmgren.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	flo 0.2.0 documentation

developing

	Fork [https://github.com/deanmalmgren/flo/fork] and clone the
project:

git clone https://github.com/YOUR-USERNAME/flo.git

	Install Vagrant [http://vagrantup.com/downloads] and
Virtualbox [https://www.virtualbox.org/wiki/Downloads] and launch
the development virtual machine:

vagrant up && vagrant provision

On vagrant sshing to the virtual machine, note that the
PYTHONPATH and PATH environment variables have been
altered in this virtual machine [https://github.com/deanmalmgren/flo/blob/master/provision/development.sh]
so that any changes you make to your local data workflow scripts
are automatically reloaded.

	On the virtual machine, make sure everything is working by executing
workflows in examples/*/flo.yaml

cd examples/reuters-tfidf
flo run

	To be more thorough, there is an automated suite of functional tests
to make sure any patches you have made haven’t disturbed the behavior
of this package in any substantiative way.

./tests/run_functional_tests.sh

These functional tests are designed to be run on an Ubuntu 12.04
LTS server, just like the virtual machine and the server that runs
the travis-ci test suite. There are some other tests that have been
added along the way in the Travis configuration [https://github.com/deanmalmgren/flo/blob/master/.travis.yml]. For your
convenience, you can run all of these tests with:

./tests/run.py

Current build status: [image: Build Status] [https://travis-ci.org/deanmalmgren/flo]

	Contribute! There are several open issues [https://github.com/deanmalmgren/flo/issues] that provide good
places to dig in. Check out the contribution guidelines [https://github.com/deanmalmgren/flo/blob/master/CONTRIBUTING.md] and send
pull requests; your help is greatly appreciated!

 Copyright 2014, Dean Malmgren.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	flo 0.2.0 documentation

changelog

This project uses semantic versioning [http://semver.org/] to
track version numbers, where backwards incompatible changes
(highlighted in bold) bump the major version of the package.

latest

	enforce that depends must exist prior to running any commands (#59)

	more informative error messages (#56, #57, #58)

	several bug fixes, including:
	properly handling backspacing output of subprocessed commands (#53)

1.0.0

	removed pseudotask creation (every task must have a command key)

	specifying alternative yaml configuration (#62)

	incorporated deterministic ordering in a predictable and explainable
manner (#65, #70)

	introduced flo status command; removed ``flo run –dry-run``
in favor of ``flo status`` (#55)

	incorporated the --only option (#37)

	several bug fixes, including:
	making sure that the TaskGraph is a directed acyclic graph (#61)

	ensuring that creates exists after a task has been run (#60)

	clarifying output on flo status and flo run (#64)

0.2.0

	Initial release

 Copyright 2014, Dean Malmgren.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	flo 0.2.0 documentation

Index

 Copyright 2014, Dean Malmgren.
 Created using Sphinx 1.2.2.

 _images/sibling.png
‘l'“l'n’
a

_images/parallel.png

_static/comment.png

_static/minus.png

_static/comment-close.png

_static/up.png

_images/merge.png
~ ll,l

_static/plus.png

search.html

 Navigation

 		
 index

 		flo 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Dean Malmgren.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

